Satellite-based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloud-free oceans
نویسندگان
چکیده
[1] Most assessments of the direct climate forcing (DCF) of anthropogenic aerosols are from numerical simulations. However, recent advances in remote sensing techniques allow the separation of fine mode aerosols (anthropogenic aerosol is mostly fine aerosol) from coarse mode aerosols (largely marine and dust, which are mostly natural) from satellite data such as the Moderate Resolution Imaging SpectroRadiometer (MODIS). Here, by combining MODIS narrowband measurements with broadband radiative flux data sets from the Clouds and the Earth’s Radiant Energy System (CERES), we provide a measurement-based assessment of the global direct climate forcing (DCF) of anthropogenic aerosols at the top of atmosphere (TOA) only for cloud free oceans. The mean TOA DCF of anthropogenic aerosols over cloud-free oceans [60N–60S] is 1.4 ± 0.9 Wm , which is in excellent agreement (mean value of 1.4 Wm ) with a recent observational study by Kaufman et al. [2005]. Citation: Christopher, S. A., J. Zhang, Y. J. Kaufman, and L. A. Remer (2006), Satellite-based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloud-free oceans, Geophys. Res. Lett., 33, L15816, doi:10.1029/2005GL025535.
منابع مشابه
Cloud-free shortwave aerosol radiative effect over oceans: Strategies for identifying anthropogenic forcing from Terra satellite measurements
[1] Using the Single Scanner Footprint (SSF) data that combines the multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) cloud and aerosol products with the Clouds and the Earth’s Radiant Energy System (CERES) top of atmosphere broadband radiative fluxes, we first provide observational estimates of the instantaneous cloud-free shortwave aerosol radiative forcing (SWARF) over the...
متن کاملSatellite-based assessment of cloud-free net radiative effect of dust aerosols over the Atlantic Ocean
[1] Using eighteen months (June–August, 2000–2005) of spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth’s Radiant Energy System (CERES) data from the Terra satellite over the Atlantic Ocean [10W–60W, 0–30N], we first separate the dust aerosol optical thickness at 0.55 mm (AOT) from the total column MODIS AOT. We then calculate...
متن کاملShortwave aerosol radiative forcing over cloud-free oceans from Terra: 2. Seasonal and global distributions
[1] Using 10 months of collocated Clouds and the Earth’s Radiant Energy System (CERES) scanner and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud data from Terra, we provide estimates of the shortwave aerosol direct radiative forcing (SWARF) and its uncertainties over the cloud-free global oceans. Newly developed aerosol angular distribution models (ADMs) (Zhang et al.,...
متن کاملUpdated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model
[1] The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) includes a comparison of observation-based and modeling-based estimates of the aerosol direct radiative forcing. In this comparison, satellite-based studies suggest a more negative aerosol direct radiative forcing than modeling studies. A previous satellitebased study, part of the IPCC comparison, uses aero...
متن کاملA modeling study of the direct effect of aerosols over the tropical Indian Ocean
The microphysical, chemical, optical, and lidar data collected during the Indian Ocean Experiment (INDOEX) resulted in a self-consistent aerosol formulation for a multiple-scattering Monte Carlo radiation model. The model was used to simulate the direct aerosol radiative forcing, cloud radiative forcing, and heating rates for typical winter monsoon conditions over the tropical Indian Ocean. The...
متن کامل